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1. Introduction

By virtue of their function approximation capabilities, feedforward artificial neural
networks have lent themselves well to applications in statistical pattern classification and
nonlinear system mapping. Given the desired mapping (I/O) pairs (x;.y;), x eR™ and y €
R | a feedforward neural network can be characterized by the triple M(W,C,F) which
implements the mapping f(x{W,C,F):R"—>N" where W parameterizes the network weights,
C (strongly) specifies the network connectivity, and F represents the activation functions
corresponding to each node. The conventional approach in most applications is to
arbitrarily fix the architecture by defining the number of hidden units and the number of
layers and defaulting to full connectivity between layers. A sigmoidal activation function
such as the g(u)=1/(I+e*) normally serves as the de facto nonlinear mapping of each
node in the network.

Given the above constraints, the standard network design approach becomes a
nonlinear regression problem which seeks to determine a weight set w that minimizes an
arbitrarily selected objective function J(x,w). The most commonly used objective function
is the sum-squared network error which satisfies the continuity requirements of gradient
search methods such as backpropagation!. The traditional design approach can become a
tedious and laborious undertaking if an acceptable objective criterion (i.e., J < &) is not
met due to inadequate network representation or learning.

The cascade-correlation learning architecture? (CCLA) has been proposed as
constructive method that automates the network design process. This investigation
modifies the traditional cascade-correlation training algorithm by using evolutionary

- presented at the Third Annual Conf. on Evolutionary Programming, San Diego, 1994.




search instead of quickprop?® to train each candidate hidden node. At the end of each
evolutionary cycle, the best 'evolved' candidate node is incorporated into the network.

The following sections discuss the CCLA and our hybrid approach for
evolutionary optimization. The application of evolutionary search to the CCLA is then
described. Finally, results are discussed for the parity and spiral problems.

1.1 Cascade-Correlation Architectures

Cascade-correlation architectures were introduced by Fahlman and Lebiere? as a
means of automatically determining parsimonious network structure given a particular
data set. The network is initiallized with only the input units mapped directly to the
output units. New hidden units are individually incorporated into the network with input
weights frozen. The input weights to each hidden unit are frozen since newly created
nodes have been trained to maximize the correlation between their output and the residual
output error of the network. This is the correlation aspect of the cascade-correlation
architecture. A pool of hidden units can be used to increase the likelihood of finding a
good candidate unit. Each new hidden unit is connected to all input and previously
created hidden units in the network as shown in Figure 1. All of the hidden units are
connected to all of the output units. After each hidden unit is incorporated into the
network, additional training takes place on the weights to the output layer with the
weights to the hidden units remaining fixed. Squires and Shavlik* have shown that faster
training times and better generalization can sometimes result if all of the weights in the
network are trained using backpropagation.

The hidden and output units achieve the following mappings

hidden unit: X, =&, Z a,x; m<i<m+h (1)

output unit: X, =g Za..x. m+h<i<mthtn (2)

where A represents the number of hidden units, m the number of inputs, and n the number
of outputs. The cascade-correlation architecture appears quite similar to the projection
pursuit technique> when, assuming linear outputs, equation (2) is broken down into 1ts
linear and nonlinear components

m+h
_ T E
x,.—aiu+ aij.g}.(a].,u)

J=m+l
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Figure 1. The cascade-correlation network structure. The boxes indicate weights which are frozen when
the unit is incorporated into the network. The crosses indicate weights which are modified after a new
hidden unit is incorporated.

where u=x; V ie{l,...,m} and a;7=qy; V jefl,...,m}. However, this view oversimplifies the
repeated nonlinear transformations which actually occur as described by

m+h !
— a7 T
x;=a; u+ E a;g;|a;ut E ajkgk(akau)
j=m+l k=m+]

1.2 Evolutionary Search

In 1958, Brooks® described a creeping random method where k points were
generated via Gaussian perturbations about a search point. The best point was kept and
the process repeated. Brooks observed that “there are some rather intriguing analogies
that can be made between the creeping random method and evolution." This analogy was
also apparent to Fogel e al.” who proposed a random search strategy termed evolutionary
programming (EP). Fogel et al.” proposed the following:

A "parent” organism is scored in terms of its ability fo accomplish the desired decision
making on the basis of evidence at hand. The organism is mutated to yield an
“offspring" which is given the same task and scored in a similar manner. That organism
which demonstrated the greatest ability to perform the required function is retained to
serve as parent for a new offspring.




More recently, D. Fogel®? has refined the EP paradigm as well as applied it to a
variety of problems including system identification and control. This work modifies EP by
embedding two additional search strategies in the evolutionary optimization process. That
is, the evolutionary search algorithm implemented in this study augments standard EP by
incorporating recombination of the parents to generate offspring and by modifiying the
parents before any offspring are generated. The utilization of the recombination operator
produces an evolutionary search method similar to an evolution strategy'® (ES). The
parents are modified using the Solis and Wets!! random optimization method. The
resulting strategy has been termed a hybrid evolutionary algorithm and is given below in
the nomenclature proposed by Back and Schwfel’®. This hybrid approach appears to
incorporate both Darwinian evolutionary learning and Lamarckian inheritance models
which gives rise to the term “Lamarckian Learning." As pointed out by Davidor!?,
“Larmarckism is an important model which can complement many learning algorithms."

A HYBRID-EVOLUTIONARY SEARCH ALGORITHM

k=0;

initialize: P(0) = {a,(0),...,a,(0)};
where a, = (x;,Vj €{l,...,n})

evaluate P(0): ©(P(0)) = {P(q,(0)),...,D(a,(0))};
do
{ modify parents: a,(k) = {m,s} g (@, (k))Vie{l,..., 4}

mutate: a/(k)=m,(a,(k))Vie{l,...,u}
recombine: a;'=r'(P(kyw P'(k)) Vi e{l,..., 4}
evaluate P"(%): O(P"'(k)) = {P(a;'(k)),..., D(a,(k))}
select: P(k +1) =5, ,(P(k)w P (k)):
k=k+1,
y while (:(P(k)) # true)

2. Evolving Cascaded Networks

The work conducted in this study employs evolutionary search to optimize a
population of individual nodes and then the best node is brought into the network in a
purely constructive manner. This contrasts other work in evolving networks which
focuses on the optimization of a whole population of neural nets using both constructive
and pruning mechanisms!®!4.  Benefits of the single node approach include lower
computational requirements in the form of memory and processor power.

A population of candidate hidden units are randomly intialized with full
connectivity as in the standard cascade-correlation learning architecture (CCLA). The




same optimization objective used to train CCLA units was employed to represent the
fitness of each candidate node

o@)= D > (2,-Z,)E,.~E)

where Z,, represents the output of each candidate node for pattern p and E is the residual
error as measure at the networks output o. The weight vectors for each candidate unit
were modified using the hybrid method given above. Mutation of each weight was
accomplished using standard EP

W, =W, ++/8f 1 ®(a,)-N(0,1)

where Sf represents the scaling factor. Recombination took place according to

w, =w,.+l(wj~w,.)

where ijefl,..,.2N}, i, and A~U(0,1). Selection was determinstic using a (p-+p+)
strategy to choose the best p individuals among the modified parents, the mutated
offspring, and the recombined offspring. After an arbitrary number of generations, the
best candidate unit was inserted into the network.

The output weights were found using a more direct approach. The inputs to the
output layer of the cascade-correlation architecture for p patterns are described by

m

m m m (1) (1)
xl X2 o xm m+| m+2 xm+h
@ L@ . L@ L@ L@ @
X _ xl xl xm xm+] xm+2 oo m+h
P
192} w . (p) (p) €2] ¢2)
xl . x'.’ xm xm+1 xm+2 xm+h

Likewise, the outputs of the network are given by

o ) o

xm+h+l xm+h+2 xm+h+n
)] ) @)

Y = Xt X2 7 X e ben
p - - . -
(p) x(P) x(P)

m+ hel a+ht2 m+h+n




where YP=X V. The optimal (in a least-squares sense) weight set V can be determined

2

from V =(X X p)" X;Yp. Iterative deterministic methods such as the LMS rule can also

be applied in determining the n-(m+h) output weights.
Finally, the complexity of the network was monitored using an MDL-like!®
objective function

Jopr =In(&*)+n,In(p)/ p

where n,, is the number of weights. The number of hidden units can be directly
incorporated in this calculation according to

Jop =In(&)+(n-(m+h)+m-h+h-(h=1)/2)In(p)/ p
Ultimately, one desires to construct a network with minimal complexity cost.
3. Results

The proposed algorithm was initially tested on the 3-bit and 4-bit parity problems,
respectively. Using the above formulation, solutions were found in a relatively rapid
manner for a small number of evolutionary training cycles or generations (typically less
than 10). Due to the discrete nature of the problem, the fitness values climbed in a
precipitous fashion using evolutionary optimization with 50-100 parents. The panty
problem proved insightful for tuning the algorithm in that dependence on the scaling factor
was observed. For example, a Sf=10 reliably yielded architectures with only one hidden
node for the 3-bit parity problem or two hidden nodes for the 4-bit parity problem. A
Sf=1 often resulted in networks with more than the minimum number of nodes.

The next experiment investigated the two-spirals problem. The two-spirals
problem requires the network to discriminate between two interlocking spirals which
encircle the origin three times. This problem has proved troublesome for standard
architectures and training methods?. The two-spirals are readily discriminated using the
CCLA with quickprop training. Since these experiments replace the quickprop training
with stochastic search similar results were expected. The training method outlined above
did manage to solve the two-spiral problem, but more than the typical 10-15 hidden units
were necessary. The need for additional hidden units may have resulted from a need for
better local learning or increased behavioral freedom. These hypotheses are currently
under investigation.

The receptive plane generated using 100 parents (without the Solis and Wets
technique), fanh activation functions, and a Sf=1/ are shown in Figure 2(a). The receptive
plane does not appear to generalize as well the cascade-correlation classifier found using
quickprop? in that a “sausage-link" effect occurs as opposed to a clean spiral. The number
of training cycles and hidden nodes were arbitrarily limited to 300 and 24, respectively, as
shown in Figure 2(b). Figure 3 compares the optimization process in terms of network




mean squared-error and complexity as each hidden node is incorporated. For this training
run, Figure 3(b) shows that a flattening occurs around 10 hidden nodes before the
complexity cost resumes its climb upon incorporation of additional hidden nodes.
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Figure 2. (a) The training points are superimposed on the contour grid for the two-spiral problem, and
(b) The best fitness @(a) in each pool of candidate hidden units is plotted for the number of nodes added.
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Figure 3. (a) The mean squared network error, and (b) the complexity cost Jy p; as new hidden nodes
are incorporated into the network.




4. Conclusion

As more information and insight are gained into the dynamics of evolutionary
computation, it is inevitable that components from the various search strategies (ES, EP,
GA) will be combined to yield fairly robust multi-agent stochastic search techniques. This
work has demonstrated the applicability of evolutionary search, albeit a hybrid approach,
for use in the cascade-correlation learning architecture. More importantly, this work
represents a preliminary step toward using evolutionary search in a purely constructive
manner wherein limited fan-in random wired nodes!é can be generated with a randomly
chosen activation function feF. These issues will be addressed in subsequent work.
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